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The demand of short life cycle products and their spare parts are often nonlinear and non-stationary, thus,

traditional time series forecasting methods, such as Double Exponential Smoothing (DES) and Autoregressive

Integrated Moving Average (ARIMA), have difficulty of getting accurate forecasting results for them. In

this paper a novel hybrid model, IEAF, is proposed to forecast the demand of short life cycle spare parts.

IEAF model hybrids the pre-processing process of data mining to clean data, the Ensemble Empirical Mode

Decomposition (EEMD) method to decompose and remove data non-stationary, and the ARIMA method to

predict the decomposed data, followed by post-processing process to arrive final forecast results. To overcome

the undershoot and overshoot problems in standard EEMD, an improved method is developed to generate

the envelopes in data decomposition. Our empirical test with 446 real data sets of spare parts proved that the

proposed model has more accurate and stable forecasting results than two traditional forecasting methods

and earlier version of model decomposed method. With IEAF model managers can make better decision on

spare parts inventory management.

Key words : spare parts forecasting, short life cycle products, Ensemble Empirical Mode Decomposition,

ARIMA, data mining

1. Introduction

Tech-savvy products, such as mobile phones, laptops and pads, have short life cycle and are very

difficult to forecast, plan and manage. Compared with other daily use products, the life cycle of

these products are much shorter which vary from several months to less than three years (Kurawar-

wala and Matsuo 1958). The spare parts of short life cycle products for maintenance usually have

the same short life cycle. When the sales of products increase, the demand of spare parts will

also increase accordingly. In addition, short life cycle products and their spare parts have some

special characteristics, such as being seasonal, lacking of historical data and having rapid random

fluctuation (Kurawarwala and Matsuo 1958). As such, it is difficult for companies to get accurate

forecasting results of spare parts to ensure daily maintenance. If current inventory level is low, too

many repairing request will result in a shortage of spare parts. Customers’ satisfaction will then

drop down, as not all customers’ repairing requests are met on time. On the other hand, when lots
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of spare parts are hold, it will increase inventory cost if there is few repairing request. As time goes

by, new products will come out to replace the old ones. If there are still many spare parts of old

products after their withdrawing from market, companies will suffer great losses.

Another challenge of spare parts forecasting caused by the delay between sales data recording

and real repairing activities. Manufacturers often record sales data of spare parts once they are

sold. But the spare parts may only be sold to the maintenance stations but they have not been used

for repairing yet. This situation is similar to the sales of short life cycle products. Products may

still be hold by distributors, wholesalers or retailers. They are not brought by customers but the

sales data has been recorded. Thus, it is hard to find accurate relation between demand of short

life cycle products and their spare parts, thereby, we cannot estimate spare part demand based on

the product demand directly.

In order to plan the resources, make the pricing decision, and improve customer services, an

appropriate inventory control point for spare parts is needed. Traditional forecasting algorithms,

such as Double Exponential Smoothing (DES) and Autoregressive Integrated Moving Average

(ARIMA), have difficulty of obtaining accurate forecasting results, due to the fact that most short

life cycle data has significant amount of noise and is nonlinear and non-stationary in nature. Recent

advances in data mining and model decomposition research have obtained promising results in

analysing data with the mentioned features. The two key elements which contribute to the success

of data mining are: data preprocessing and post processing. Data preprocessing techniques can

be used to clean or repair the initial data to remove noise, missing, redundancy and invalid data

which have bad influences on forecasting. Post-processing procedures usually include varied pruning

routines, rule filtering, empirical adjustment or even knowledge integration (Bruha and Famili

2000). Data decomposition method, based on Ensemble Empirical Mode Decomposition (EEMD),

can transform non-stationary data into stationary sub data sets (Wu and Huang 2009) which can

then be properly handled by traditional forecasting methods.

In this paper, a novel forecasting method, named IEAF, based on a hybrid of data mining pro-

cess, an improved EEMD and ARIMA forecast methods is proposed. We propose improvement

over EEMD and integrate ARIMA into the middle of data mining process, starting with a prepro-

cessing phase and ending with a post processing stage. We implemented the proposed approach

and statistically evaluated the results with 446 real data sets. Empirical tests proved that IEAF

method is more accurate than traditional forecasting methods and the improvements are statisti-

cally significant.

The novelty and main contributions of this paper lie in:

1. Hybrid data mining and EEMD processes. We integrate data mining process with EEMD to

reduce data noise so as to improve forecast accuracy.
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2. Improved EEMD Method: We developed a new way to generate envelopes during the process

of EEMD which reduce the amounts of overshoot and undershoot.

To the best of our knowledge, this paper is the first to adopt and improve Hilbert-Huang Trans-

form (HHT) process for non-stationary time series forecast. It is also one of the few studies that

hybrid data mining with time series method to increase forecasting accuracy. The paper is organized

as follows. Section 2 provides a literature review of related methods for spare parts forecasting.

Section 3 describes the standard EMD and EEMD methods. Section 4 presents the technical details

of the proposed IEAF algorithm. Section 5 presents details of experiment and implementation.

Section 6 evaluates and compares the empirical test results between IEAF and other algorithms.

Finally, conclusions are drawn and some directions for future works are presented in section 7.

2. Related Work

Extensive research has been done in spare part forecast (Willemain et al. 2004), however, the

study of forecast for short life cycle spare parts is limited. We classify the related methods into

six categories: 1) growth models, 2) analog methods, 3) time series methods, 4) decomposition

methods, 5) data mining methods and 6) others.

2.1. Growth Models

Kurawarwala and Matsuo (1996) developed a growth model that uses information from past prod-

ucts histories and approximates them to entire life cycle sales to predict monthly demand. Xu and

Song (2007) analyzed the characteristics of short life cycle products and proposed an improved

Bass model for forecasting. They took into account the seasonal characteristics of demand and

modified the Bass model with consideration of seasonal factors. Compared with the Bass model,

the improved model was proved to have satisfying forecasting results for short life cycle products

demand. But Xu et al. built the Bass model with all data, which is impracticable in real world

when there is no similar or related spare part. When we predict the demand of next month, we can

only use the historical data to build the Bass model. It is difficult to estimate the parameter m

(m represents the total market potential) before the stage of maturity in product life cycle, thus,

it is difficult to predict the demand with a growth model. According to Xu and Zhang (2008), the

Bass model is more suitable for predicting the demand of durable products for particular product

type or industry and is not appropriate for short life cycle products.

2.2. Analog Methods

Szozda (2010) proposed a new method that allows people to use life cycles of similar, analogous

products to arrive at the initial forecasts for the products at hands. Green and Armstrong (2007)

proposed a structured judgmental procedure with opinions of analogies from experts for forecasting.
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However, their methods are only reasonable to predict products with similar ones which cannot be

applied to any type of products. Wu et al. (2006) explore and compare several leading indicator

methods for short life cycle product forecast. Using correlation values between leading indicators

and products, they predict the cluster demand pattern two to eight months ahead of time. However,

it is difficulty, if not impossible, to find leading indicators of spare parts when they are only designed

for specific products.

2.3. Time Series Models

Time series models have been widely used in demand forecasting. For example, Johnson and

Thompson (1975) and Ray (1982) dealt with inventory control problems using ARIMA model.

Miller (1986) modelled product demand using an exponential smoothing model. However, time

series methods have difficulty of getting accurate forecasting results when the data is nonlinear

and non-stationary.

In this paper we compared the proposed IEAF method with two popular time series methods:

Double Exponential Smoothing and Autoregressive Integrated Moving Average (ARIMA). Expo-

nential smoothing is one of the most popular methods for time series forecasts. When there is

a trend in the data, simple exponential smoothing model cannot do well (Croarkin et al. 2010).

Therefore, double exponential smoothing (DES) model (Cooray 2008) was introduced and com-

pared.

Let Yt+T be the predicted value of tth term initial value after T terms. S
(1)
t and S

(2)
t are the first

and second exponential smoothing value. xt is the tth term initial value and α is the level of the

series, then:

Yt+T = at + bt ·T

at = 2S
(1)
t +S

(2)
t

bt =
α

1−α
(S

(1)
t −S

(2)
t )

(1)

where

S
(1)
t = αxt + (1−α)S

(1)
t−1

S
(2)
t = αS

(1)
t−1 + (1−α)S

(2)
t−1

(2)

Parameter α of SES model is between 0 and 1. We choose 0.9 in this paper as it produces better

results.

Autoregressive integrated moving average (ARIMA) model is another popular time series analysis

method in statistics and econometrics, which was first proposed by Box and Jenkins (Box et al.

2008). In ARIMA(p, d, q) model, p is the number of autoregressive items, q is the number of

moving average items and d is times of difference to make the time series stationary. Thereby,

ARIMA(p, d, q) is the extension of ARMA(p, q) model.
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2.4. Decomposition Methods

Chung et al. (2012) proposed a sales forecasting model of movie and game products at Blockbuster

Company. They assumed that the sales consist of three components: consumers who have rented

or bought things already, consumers who will rent or buy things and the networking effect between

related potential customers and previous customers. With empirical test, they showed that their

sales model matched well with the real sales activities.

Hilbert-Huang Transform (HHT) is a popular method for modeling data with nonlinear and high

non-stationary relation (Huang et al. 1996, 1998, 1999). Empirical Mode Decomposition (EMD),

the first part of HHT, is a direct, intuitive and adaptive data decomposition method with an a

posteriori-defined basis based on and derived from the data (Huang 2005). EMD can decompose a

nonlinear and non-stationary signal into a series of Intrinsic Mode Functions (IMF) which represents

different oscillatory modes. An IMF is defined as:

1. The number of zero-crossing and the number of extrema must be equal to or differ at most

by one in the entire dataset.

2. The mean value of the lower envelope generated by the local minima and the upper envelope

generated by the local maxima is zero at any point.

Compared with other methods, for instance Wavelet Transform (WT) and Short Time Fourier

Transform (STFT), EMD can deal with nonlinear and non-stationary data much better. However,

it still has some weaknesses (Rato et al. 2008). In this study, we propose an improvement and

adapted it for spare part forecast.

2.5. Data Mining Methods

Xu and Zhang (2008) consider products’ demand, season factor and demand predicted by Bass

model and built a SVM forecasting model to predict the demand of short life cycle products. But

from the forecasting result the normalized mean square error of the proposed model is 0.5826,

which is higher than normal expected value.

Maaß et al. (2014) discussed how can data mining techniques improve the short-term forecasting

method for short life cycle products. In this work, they found that data preparation is critical to

the results. As discussed by Shearer (2000), data preparation contains five elements: 1) select data,

2) clean data, 3) construct data, 4) integrate data and 5) format data. In this study, we adopt data

cleaning and data decomposition to decrease the uncertainty in data.

2.6. Other Methods

Zhu and Thonemann (2004) proposed an adaptive forecasting algorithm that uses structural knowl-

edge to forecast the demand and develop an optimal inventory policy. Because it is difficult to

apply optimal policy, they further proposed three heuristics to approximate the optimal inventory
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policy and shown that one of them had near optimal solutions. They implemented and evaluated

the algorithm with data from a personal computer manufacturer in North America. Cakanyildirim

and Roundy (2002) discovered that lots of demand forecasting algorithms are easily affected by

the random errors. They proposed a scheme which can estimate the correlation and variance of

forecasting errors and use it to model the evolution of forecasting over time. In this study, we apply

simple data preprocessing method to deal with data noise or unexpected data issue.

3. Mode Decomposition of Hilbert-Huang Transform

In this section, we will use data sets 69 and 141 to illustrate the mode decomposition process of

HHT and explore its strengths and weaknesses. The nature of these data sets are given in the

appendix.

3.1. Empirical Mode Decomposition (EMD)

As discussed in section 2.4, EMD is a useful decomposition method for nonlinear and non-stationary

data. The process of EMD, known as shifting process, can be preceded as follows:

1. Identify all the local maxima and minima points. In the EMD/EEMD matlab code written

by Wu (2014), local maxima is defined as xi where xi−1 ≤ xi and xi ≥ xi+1 and local minima is

defined as xi where xi−1 ≥ xi and xi ≤ xi+1. Using data set 141 as an example, we identify 6 local

maxima points and 5 local minima points, as shown in Fig. 1.

2. Connects all local extrema points with a cubic spline interpolation to generate the upper and

lower envelopes. For point x∈ [xi, xx+1], the cubic polynomial curve is defined as:

y= ai(x−xi)
3 + bi(x−xi)

2 + ci(x−xi) + di (3)

a, b, c and d can be solved by:

ai =
Si+1−Si

6hi

bi =
Si

2

ci =
yi+1− y1

hi

di = yi

(4)

where

hi = xi+1−xi

hi−1Si−1 + (2hi−1 + 2hi)Si +hiSi+1 = 6

(
yi+1− y1

hi

− yi− yi−1

hi−1

)
(5)

In this study, we take ”not-a-knot” as boundary conditions, thus:

S
′′′

0 (x1) = S
′′′

1 (x1)

S
′′′

n−2(xn−1) = S
′′′

n−1(xn−1)
(6)
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Figure 1 Upper and lower envelopes generated by EMD and the mean value of upper and lower envelopes

(Dataset 141)
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3. Define m1 as the mean value of upper and lower envelops generated at first time, as shown in

Fig 1. Then the first component h1 is defined as:

h1(t) = x(t)−m1 (7)

where, x(t) is the initial data.

4. Check if h1 is an IMF. If it satisfies the definition of an IMF, then we get the first IMF. If it

does not, we treat h1 as the data. Repeat steps 2 and 3 until hi become an IMF. As shown in Fig.

2, the number of zero-crossing is 11 and the number of extrema is 18. Therefore, h1 is not an IMF.

Besides, there is another stoppage criterion, sdi, that needs to be considered. If sdi is smaller

than a predetermined value, the shifting process will be stopped. Where,

sdi =

T∑
t=0

|hi−1(t)−hi(t)|2

T∑
t=0

h2
i−1

(8)

5. When the first IMF c1 is found, we remove it from the data by following:

x(t) = x(t)− c1 (9)

Repeat steps 2 to 4 to get all IMFs until x(t) becomes smaller than the predetermined value or

the residue is a monotonic function. At this time the remain x(t) is called residue r and no more

IMFs can be generated.
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Figure 2 Data and h1 (Data set 141)
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6. Through steps 2 to 5 we can finally get

x(t) =
n∑

j=1

cj + r (10)

and the decomposition of the initial data based on strand EMD method is finished.

3.2. Ensemble Empirical Mode Decomposition (EEMD)

Although EMD was proved to be useful in many cases there are still many unsolved difficulties

of using HHT in specific application domains (Wu and Huang 2009). In particularly, when the

data is formed by both high and low frequency signals, the IMF generated by EMD may contains

disparate scales signals or similar scale signals may appear in different IMF components. This

phenomenon is known as mode mixing. The intermittency not only causes detrimental aliasing in

the time-frequency distribution, but also makes the physical meaning of every IMF unclear. It is

also likely resulted in serious overshoot and undershoot as shown in Fig. 1.

To fix the problems, a new noise-assisted data analysis method, named Ensemble Empirical Mode

Decomposition (EEMD), is proposed by Wu and Huang (2009). The basic idea of EEMD is to add a

series of uniformly distributed white noise to the initial signal which makes the signal continuous at

different scales. The addition changes the characteristics of extreme points of signal and improves

the ability to decompose the data without mode mixing. The standard EEMD procedure, works

as follows:
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1. Add uniformly distributed white noise ni(t) to the signal x(t),

xi(t) = x(t) +ni(t) (11)

where xi(t) is the signal after ith being added white signal.

2. Decompose the data with uniformly distributed white noise into IMFs.

3. Repeat steps 1 and 2 with different white noises every time (repeated 20 times in this work).

4. Obtain the (ensemble) means of corresponding IMFs of the decompositions as the final result.

Fig. 3 shows the IMFs of data set 1 generated by standard EEMD method, where (a)-(c) are

the IMFs and (d) is the residue. Since the corresponding IMFs of different series of white noise

have no correlation with each other, the added white noise of the corresponding IMFs cancels each

other eventually.

In the standard EEMD method, though it can identify all the local maxima and minima and

connects them by a cubic spline interpolation with ”not-a-knot” boundary conditions to generate

the upper and lower envelopes, it still has some shortcomings such as having overshoot and under-

shoot near the beginning and end of period. In next section, we will propose our improvement over

EEMD and discuss how it be integrated with a data mining schema for spare part forecasting.

Figure 3 IMFs generated with standard EEMD (Data set 141)

0 5 10 15 20 25 30
−50

0

50

(a)

0 5 10 15 20 25 30
−50

0

50

(b)

0 5 10 15 20 25 30
−50

0

50

(c)

0 5 10 15 20 25 30
−200

0

200

(d)

Month



10 Jie Li, Yeliang Fan, Chao-Hsien Chu: IEAF: A Hybrid Method for Forecasting Short Life Cycle Spare Parts

4. The Proposed IEAF Method

As can be seen from the above reviews, illustrations and discussions, none of the existing methods

can fully address the challenges faced by forecasting the demand of short life cycle spare parts. Some

of the unique characteristics we need to conquer include: random fluctuation (noise), nonlinearity,

non-stationary, shortage of historical data (short life cycle). We proposed a model that hybrids

data mining process, improved EEMD and ARIMA to address the issues.

The hybrid IEAF method can be divided into four phases (see Fig. 4):

1. Data cleaning, to reduce noise and unexpected data value.

2. Decomposition with an improved Ensemble Empirical Mode Decomposition (IEEMD) method,

to remove data non-stationary.

3. Forecasting of every IMF with Autoregressive Integrated Moving Average (ARIMA) model.

4. Post-processing with removing negative values and rounding up values.

4.1. Data Cleaning

The very first step to be done in IEAF is data cleaning. A data set often consists of some noise,

incorrect, inconsistent or invalid data. These problems can be caused by mistake of recording,

special impact from other aspects, etc. Demand of short life cycle products spare parts is mainly

associated with the sales of products themselves. Apparently demand of short life cycle products

will be enhanced with increasing sales of these products. But it may also be affected by some other

aspects. For instance, if one shop stops maintenance service for a day, then the demand of spare

parts this day will definitely be zero. If today is weekend, office workers may go to the maintenance

station to repair their own mobile phone because they have much more free time than as usual. So

data cleaning must be applied first to fix these kinds of glitches.

Adopting the similar idea from quality control charting (Shewhart 1931), we check if the point

satisfies the out of control condition:

xi ∈ [x̄− 3σ, x̄+ 3σ] (12)

where, x̄ is the mean value of these six points, σ is the standard deviation of the left and right

three points. If xi does not satisfy (1), then it will be replaced by

X̄ =
1

7

i+3∑
j=i−3

xj (13)

The reason why we replace it with X̄ not x̄ is that we also need to keep some increasing or

decreasing trends. Using data set 69 as an example, the difference of initial data and cleaned data

with this method is shown in Fig. 5. As shown, the data of month 16 was adjusted from 12 to

26.57, as it is much smaller than the values around neighborhood.
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Figure 4 The process of IEAF method
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4.2. Decomposition with Improved EEMD (IEEMD)

Though, at this stage, some unexpected values have been adjusted from initial data sets, the data

are still nonlinear and non-stationary in nature. We apply IEEMD method to transform the cleaned

data into stationary ones. Our proposed improvements in this phase focus on the convex points

and the method used to generate the envelopes.
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Figure 5 Initial data and cleaned data (Data set 69)
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First, in the standard EEMD method, it identifies all the local maxima and minima, then con-

nects them by a cubic spline interpolation with ”not-a-knot” boundary conditions to generate the

upper and lower envelopes. But it has some shortcomings, so here we not only take local maxima

and minima points into consideration, but also consider some convex points, as showed in Fig. 6.

Let pi be the point we will check. pi−1 and pi+1 are the previous and next point of pi. We define

~a= (xa, ya) as a unit vector pointing from pi to pi−1 and ~b= (xb, yb) as a unit vector pointing from

pi to pi+1. If the angle moved from ~a to ~b clockwise is between 7π/6 and 3π/2, then pi is a convex

point. As shown, points of month 16 and 28 are the convex points. These convex points, not local

maxima or minima, were not used to generate the envelopes in the standard EEMD method, which

will result in the difference of mode decomposition.

Second, in the standard EEMD method, it uses Cubic Spline Interpolation to produce envelopes

of signals. Since the demand of short life cycle product spare parts changes rapidly, the Cubic

Spline Interpolation does not make sure the interpolation curve between two local maxima or local

minima points is monotonic. Thus, the standard EEMD method with Cubic Spline Interpolation

may lead to the problems of undershoot and overshoot. As a result some spurious IMF components

will be generated at the same time.

We propose to use Piecewise Cubic Hermite Interpolation which constructs a piecewise interpola-

tion curve with consequent derivatives to produce envelopes. Piecewise Cubic Hermite Interpolation

function meets the following conditions (Fritsch and Carlson 1980):
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Figure 6 Difference of points found by standard EEMD and IEEMD (Data set 141)
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1. Ih(x)∈C1[a, b], where C1[a, b] is the function sets of consequent first derivatives in [a, b].

2. Ih(xk) = fk, I
′
k(xk) = f

′
k, where k= 0,1, ..., n.

3. Ih(x) is cubic polynomial in every [xk, xk+1].

And the expression of Ih(x) in [xk, xk+1] is shown in (14).

Ih(x) =

(
x−xk+1

xk−xk+1

)2(
1 + 2

x−xk

xk+1−xk

)
fk

+

(
x−xk

xk+1−xk

)2(
1 + 2

x−xk+ 1

xk−xk+ 1

)
fk+1

+

(
x−xk+1

xk−xk+1

)2

(x−xk)f
′

k

+

(
x−xk

xk+1−xk

)2

(x−xk+1)f
′

k+1

(14)

Fig. 7 shows the differences of envelopes generated by standard EEMD and IEEMD. The stan-

dard EMD method generates envelopes with Cubic Spline Interpolation cannot guarantee the curve

between local maxima and local minima in monotonic. In fact, the problems of overshoot and

undershoot, as shown in Fig. 7, are caused by using the Cubic Spline Interpolation. In which, the

lower envelope may be higher than the upper envelope (See ”overshoot” in Fig. 7) which will result

in an inappropriate mean value to be removed from data. Fig. 8 shows the IMFs of data set 1
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Figure 7 Difference of envelopes generated by standard EEMD and IEEMD (Data set 141)
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generated by IEEMD method. Where, (a)-(c) are the IMFs and (d) is the residue. Basically, the

resulted IMFs (a), (b) and (c) from EEMD and IEEMD look similar to each other except after

months 20.

4.3. Forecasting with ARIMA

For every IMF, we can then predict the demand of next month using the ARIMA model.

ARIMA(p, d, q) model is defined as:(
1−

p∑
i=i

φiL
i

)
(1−L)

d
Xt =

(
1 +

q∑
i=1

θiL
i

)
εt (15)

where, L is the lag operator, φ are the parameters of autoregressive, θ are the parameters of the

moving average and d is the parameter of integrated process.

The parameter d is the times of difference to make the time series stationary. The parameters p

and q in ARIMA(p, d, q) are chosen by Akaike Information Criterion (AIC). AIC was first proposed

by Akaike (Akaike 1974). Based on the information theory, AIC offers a new relative estimate

method. The AIC value is defined as:

AIC = 2k− 2ln(L) (16)
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Figure 8 IMFs generated with IEEMD (Data set 141)
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where k is the number of parameters in the model and L is the maximized value of the likelihood

function for the model. After the forecasting of every IMF, we can then get real predicted value y

by combining the results from IMFs:

y=
k∑

i=1

yi (17)

where k is the count of IMFs generated by IEEMD method and yi is the predicted value of every

IMF with ARIMA model.

4.4. Post-processing

Since the value we want to predict is the amount of spare parts needed in the future, it must be

an integer and equal or greater than zero. Thus, we should replace the obtained negative values

with zero and round up the values to the nearest integer values.

The complete set of pseudo code of IEAF method is defined in Algorithm 1.

5. Implementation and Experiment

In this paper, we aim to 1) compare the relative performance of the proposed hybrid model, IEAF,

with two traditional forecast methods - DES and ARIMA 2) assess the impact of data cleaning

process and 3) assess the effectiveness of the proposed improvements over standard EEMD. Five

models - DES, ARIAM, EAF (standard EEMD + ARIMA), IEAF-NPRE (IEEMD + ARIMA,

but without preprocessing) and IEAF (IEEMD + ARIMA) – were considered for comparison.
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Algorithm 1 IEAF Method

input: S - The initial time sequence

output: V - The predicted value of next month

1: function IEAF(S)

2: I = {}, P = {}, V = {}

3: Sc← Clean(S) . Clean the initial data

4: I← IEEMD(Sc) . Decompose cleaned data into IMFs with improved EEMD method

5: for all i∈ I do

6: P ← ARIMA(i) . Predict the value of next point of each IMF

7: V ← V +P . Combine each P into the final forecasting value V

8: end for

9: V ← NegativeToZero(V ) . Replace negative values with 0

10: V ← Round(V ) . Round up values to the nearest integer values

11: return V

12: end function

All methods were coded in Matlab. We use the standard EEMD Matlab source code written by

Wu (2014) and extend it for IEEMD. In the source code it evaluates TNM as total IMF number.

TNM is defined as:

TNM = fix (log2 (len (x))) (18)

Where fix (x) rounds the elements of x toward zero and len (x) returns the length of x. Besides,

it shifts 10 times to get every IMF, which is different from the standard EMD method. The

experiments were conducted on a laptop with 4 cored 2.3 GHz processor, 8G bytes memory and

Windows 8.1 x64 based OS.

5.1. Performance Measures

Three performance measures - Mean Absolute Error (MAE), Mean Absolute Percentage Error

(MAPE) and standard deviation of MAPE (σMAPE) - were used for comparison. These measures

have been extensively used in many forecasting studies (Kurbatsky et al. 2014, Wu et al. 2006).

1. Mean absolute error (MAE), which is a metric used to measure how close forecasts are to the

actual outcomes. The smaller value means the lower forecast error.

MAE =
1

n

n∑
i=1

|p̂i− pi| (19)

where p̂i is predicted value, pi is the real value at time i and n is the number of predicted month.
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2. Mean absolute percentage error (MAPE), which is a measure of forecasting accuracy as a

percentage of error for a forecast method. The smaller value means the lower percentage of forecast

error.

MAPE =
1

n

n∑
i=1

∣∣∣∣ p̂i− pipi

∣∣∣∣ · 100% (20)

where p̂i, pi and n have the same meaning in MAE. When pi is zero, we define MAPE as:

MAPE =
1

n

n∑
i=1

∣∣∣∣ p̂i− pipi + 1

∣∣∣∣ · 100% (21)

3. Standard deviation of MAPE is used to measure the stability of forecasting method. Normally,

the method with smaller standard deviation of prediction errors is more stable. σMAPE can be

expressed as:

σMAPE =

√√√√ 1

n

n∑
i=1

(ei− ē)2 (22)

where

ei =
p̂i− pi
pi

(23)

and

ē=
1

n

n∑
i=1

eh (24)

5.2. Hypotheses

We formulate three sets of null hypotheses to statistically test the difference between each pair of

the five methods on the three performance measures:

1. Hypothesis Set 1 H1
0 : MAE = MAE0. There is no difference in MAE between each pair of

models.

2. Hypothesis Set 2 H2
0 :MAPE =MAPE0. There is no difference in MAPE between each pair

of models.

3. Hypothesis Set 3 H3
0 : σMAPE = σMAPE0. There is no difference in standard deviation of MAPE

between each pair of models.

We use paired t-test to compare the MAE, MAPE and the standard deviation of MAPE (σMAPE)

among the methods. The significance level is set at 0.05.

5.3. Data Sets

We obtain the historical data of spare parts from a major smart phone manufacturer in China for

analysis. The mobile phones have 17 kinds of spare parts (see Table 1). A total of 459 real data sets

were originally collected from Jan. 2007 to Aug. 2011. However, since 12 data sets have missing

data and one data set only has five data points, they were removed from analysis. Thus, we only

have 446 usable data sets.
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Table 1 Number of data sets of every kind of spare part

Spare parts Number of data sets∗

Accessories 11 (1)
Battery 10 (0)
Camera 7 (0)
Charger 2 (1)

Consumptive materials 64 (0)
Data cable 6 (0)

Electroacoustic device 36 (2)
Electronic components 23 (1)

Flexible circuit 11 (0)
Headphone 4 (2)

LED module 15 (0)
Mainboard 18 (0)

Small circuit board 8 (1)
Structure materials 209 (1)

Touch screen 2 (0)
Wrapping materials 32 (3)

Others 1 (1)

Total 459 (13)

∗ The number in parenthesis represents the number of data

sets with data missing problem or too short to be analysed.

6. Results and Analyses

In this section, we review the behavior of each forecasting method and compare the performance

of these methods in terms of the three measures.

6.1. A Close Look at the Forecast Results

Table 2 shows the final predicted values and measurement results from data set 141 in terms of

MAE and MAPE for the five methods we evaluated. For easy comparison, we also plot the results

in Fig. 9.

As shown in Table 2, based on the results of MAE and MAPE, we can see that IEAF performs

the best, followed by ARIMA and DES is the worst method. Two interesting results regarding this

particular data set can be observed:

1) ARIMA model performs better than EAF method, as EAF tends to overshoot or undershoot

the results in this data set.

2) The forecast results of DES lag one period behind the actual, which is common for most time

series forecasting method, because they perform forecast based on the data from previous periods.

6.2. Comparison of Forecasting Error

Tables 3 summarizes the paired t-test results of MAE. As shown, all P(T≤t) for one-tail values of

MAE are less than 0.05 except that between IEAF and IEAF-NPRE. Thus, we reject the first set

of null hypotheses except that between IEAF and IEAF-NPRE and prove that:
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Table 2 Predicted data of DES, ARIMA, EAF and IEAF and the initial data (Data set 141)

Predicted data of data set 141

Month1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Initial Data 6 17 38 52 63 91 168 118 159 151 168 136 227 179 198 157
Predicted Data (DES) - - - - - 75 116 235 92 185 151 181 113 295 155 207

Predicted Data (ARIMA) - - - - - 76 146 131 178 144 197 142 187 170 185 167
Predicted Data (EAF) - - - - - 93 169 106 136 139 146 121 212 185 216 187

Predicted Data (IEAF-NPRE)4 - - - - - 102 161 122 154 143 164 121 217 177 184 150
Predicted Data (IEAF) - - - - - 102 161 122 154 143 164 121 217 177 184 150

Month1 17 18 19 20 21 22 23 24 25 26 27 28 29 30 MAE2 MAPE3

Initial Data 156 137 106 105 73 57 47 34 56 50 43 30 28 27 - -
Predicted Data (DES) 126 149 121 78 98 46 39 35 21 71 49 37 18 24 35.28 0.3016

Predicted Data (ARIMA) 155 140 122 98 91 59 57 32 36 36 41 40 37 40 12.40 0.1505
Predicted Data (EAF) 179 148 121 102 61 42 33 14 40 32 55 55 56 48 15.56 0.2490

Predicted Data (IEAF-NPRE)4 158 125 99 112 70 58 57 31 51 44 40 42 32 17 6.88 0.0948
Predicted Data (IEAF) 158 125 99 112 70 58 57 31 51 44 40 42 32 17 6.88 0.0948

1 Month 1 is April, 2009.
2 MAE of month 6 to 30 (The demand of beginning months cannot be predicted with IEAF).
3 MAPE of month 6 to 30 (The demand of beginning months cannot be predicted with IEAF).
4 There is no noise points to be cleaned in this dataset, thus the result of IEAF-NPRE is same as IEAF.

Figure 9 Predicted data of DES, ARIMA, EAF and IEAF and the initial data (Data set 141)
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1) The average MAE of IEAF are significantly less than those of DES, ARIMA and EAF. That

means our proposed method performs better than the two traditional time series methods, DES
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Table 3 Paired T-test Results of MAE

Mean Variance Sample DES ARIMA EAF IEAF-NPRE IEAF

DES 19.327774 1315.691558 446 - 11.912310 11.412231 11.658523 11.353989
ARIMA 10.528319 529.860823 446 0.000000 - 8.155884 8.777948 8.143444
EAF 5.733946 139.286272 446 0.000000 0.000000 - 3.180331 2.985641

IEAF-NPRE 5.277700 133.561103 446 0.000000 0.000000 0.000787 - -0.039382
IEAF 5.283199 111.360228 446 0.000000 0.000000 0.001493 0.484302 -

Upper right: Critical differences in mean between group pairs (T value).

Lower left: Calculation of significances (P value) at 0.05 levels.

and ARIMA and the standard model decomposition method (EAF) in forecasting the demand of

spare parts.

2) The average MAE of IEAF-NPRE are significantly less than those of DES, ARIMA, EAF.

That means IEAF-NPRE performs better than the two traditional time series methods, DES and

ARIMA and the standard model decomposition method (EAF) in forecasting the demand of spare

parts.

3) The average MAE of IEAF-NPRE is less than that of IEAF, but not significantly. Thus, it

means the data cleaning process has impact on the forecasting error but we cannot proves that

it is statistically significant. This is due to the fact that data cleaning has positive or negative

impact on different data sets. In these 446 data sets, it has negative impact on data sets with large

demand per month which leads to this result. However, from the results of MAPE shown below,

we can still draw the conclusion that data cleaning do improve the forecasting accuracy.

4) The average MAE of EAF are significantly less than those of DES and ARIMA. That means

the standard EEMD method performs better than the two traditional time series methods in

forecasting the demand of spare parts.

5) The average MAE of ARIMA is significantly less than that of DES. That means ARIMA

performs better than the traditional DES time series method in forecasting the demand of spare

parts.

In specific, as shown in the Table 3, ARIMA can reduce the MAE of DES from 19.3 to 10.5 and

EAF can further reduce the MAE to 5.73. The proposed IEAF method finally reduce the MAE to

5.28 and the result is proved to be statistically significant.

6.3. Comparison of Forecasting Accuracy

Tables 4 summarizes the paired t-test results of MAPE. As shown, all P(T≤t) for one-tail values

of MAPE are less than 0.05. Thus, we reject the second set of null hypotheses and prove that:

1) The average MAPE of IEAF are significantly less than those of DES, ARIMA, IEAF-NPRE

and EAF. That means our proposed method can obtain higher forecasting accuracy than the two

traditional time series methods, DES and ARIMA and the standard model decomposition method
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(EAF) in forecasting the demand of spare parts. Besides, the preprocessing of IEAF can improve

the forecasting accuracy by adjusting the noise data.

2) The average MAPE of IEAF-NPRE are significantly less than those of DES and ARIMA.

That means IEAF can still obtain higher forecasting accuracy than the two traditional time series

methods, DES and ARIMA and the standard model decomposition method (EAF) in forecasting

the demand of spare parts without preprocessing.

3) The average MAPE of EAF are significantly less than those of DES and ARIMA. That means

the standard EEMD method can obtain higher forecasting accuracy than the two traditional time

series methods in forecasting the demand of spare parts.

4) The average MAPE of ARIMA is significantly less than that of DES. That means ARIMA

can obtain higher forecasting accuracy than the traditional DES time series method in forecasting

the demand of spare parts.

Table 4 Paired T-test Results of MAPE

Mean Variance Sample DES ARIMA EAF IEAF-NPRE IEAF

DES 1.181301 1.104180 446 - 12.744251 20.294880 19.690304 21.341788
ARIMA 0.725503 0.579468 446 0.000000 - 13.607557 14.368078 14.632896
EAF 0.368394 0.165397 446 0.000000 0.000000 - -3.379460 2.423588

IEAF-NPRE 0.415941 0.226612 446 0.000000 0.000000 0.000395 - 5.458413
IEAF 0.337879 0.161910 446 0.000000 0.000000 0.007883 0.000000 -

Upper right: Critical differences in mean between group pairs (T value).

Lower left: Calculation of significances (P value) at 0.05 levels.

In general, as shown in Table 4, the forecasting accuracy of DES is very bad as its mean MAPE

is far larger than 1 (i.e., 1.18). ARIMA is better but it still only has 27%(=100%-72.6%) forecast

accuracy. On the other hand, EAF can have 73%(=100%-36.8%) forecast accuracy and IEAF

can obtain 76%(=100%-33.8%) forecast accuracy. However, without preprocessing IEAF can only

obtain 58%(=100%-41.6%) forecast accuracy.

6.4. Comparison of Forecasting Stability

Table 5 summarizes the paired t-test results of σMAPE. As shown, all P(T≤t) for one-tail values

of σMAPE are less than 0.05 except that between IEAF and EAF. Thus, we reject the third set of

null hypotheses except that between IEAF and EAF and prove that:

1) The average σMAPE of IEAF are significantly less than those of DES, ARIMA and IEAF-

NPRE. That means our proposed method has stable forecasting capability than the two traditional

time series methods, DES and ARIMA in forecasting the demand of spare parts. It also proves

that the preprocessing of IEAF can improve the forecasting stability. The average σMAPE of IEAF

is less than that of EAF but not significantly.
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2) The average σMAPE of IEAF-NPRE are significantly less than those of DES and ARIMA.

That means IEAF can still obtain higher forecasting stability than the two traditional time series

methods, DES and ARIMA in forecasting the demand of spare parts without preprocessing.

3) The average σMAPE of EAF are significantly less than those of DES and ARIMA. That means

the standard EEMD method has stable forecasting capability than the two traditional time series

methods in forecasting the demand of spare parts.

4) The average σMAPE of ARIMA is significantly less than that of DES. That means ARIMA

has stable forecasting capability than the traditional DES time series method in forecasting the

demand of spare parts.

Table 5 Paired T-test Results of Standard Deviation of MAPE (σMAPE)

Mean Variance Sample DES ARIMA EAF IEAF-NPRE IEAF

DES 1.661336 4.272579 446 - 9.132085 12.988808 12.997008 13.776000
ARIMA 0.967028 1.449640 446 0.000000 - 10.379620 10.162159 11.101864
EAF 0.521873 0.327525 446 0.000000 0.000000 - -2.885295 1.595703

IEAF-NPRE 0.600878 0.633918 446 0.000000 0.000000 0.002050 - 4.482508
IEAF 0.480164 0.436822 446 0.000000 0.000000 0.055632 0.000000 -

Upper right: Critical differences in mean between group pairs (T value).

Lower left: Calculation of significances (P value) at 0.05 levels.

As shown in Table 5, IEAF method has the lowest standard deviation of MAPE among four

methods, which proves that IEAF method has the most stable forecasting results.

7. Conclusion

As discussed above, the demand of spare parts of short life cycle products has large random

fluctuation and the data is nonlinear and non-stationary, thus, the traditional forecasting methods,

such as DES and ARIMA, have difficulty of obtaining good forecasting results when applied. In

this study, a new forecasting algorithm that hybrids data mining process with our improvement

over EEMD and ARIMA was proposed to predict the demand of spare parts for short life cycle

products. IEAF decomposes the initial data into IMFs first. It then combines the result after the

forecasting of every IMF. Our empirical tests show that IEAF method can produce more accurate

final forecasting results than two popular time series forecasting methods. IEAF also reduce the

amount of undershoot and overshoot in the standard EEMD method which improve the accuracy

of the forecasting method. With more accurate forecasting values, it offers better decision supports

for managers with the management of spare parts inventory.

Future work should focus on finding the relations between the demand of spare parts and the

related sales of short life cycle products with the delay between data recording and real selling

and repairing activities. In this regards, we can divide the initial data into two phases. In the first
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phase, predict the sales of the short life cycle products with some correlation methods and then

apply the IEAF to forecast the demand of spare parts in the second phase, which may lead to more

accurate forecasting results.
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Appendix. Data set 69 and 141

Data set 69 which was used to illustrate the initial data and cleaned data is shown in Table. 6. The data

set is the demand of small circuit board No. 100001568 and the first months of it is December, 2007. Data

set 141 which was used to illustrate the process of standard EMD, EEMD and IEAF method is shown in

Table. 7. The data set is the demand of electroacoustic device No. 182000476 and the first months of it is

April, 2009.

Table 6 Data set 69

Month 1 2 3 4 5 6 7 8 9 10
Value 1 1 3 9 9 17 16 20 38 38

Month 11 12 13 14 15 16 17 18 19 20
Value 35 30 32 12 25 28 24 17 9 13

Month 21 22 23 24 25 26 27 28 29 30
Value 14 6 2 5 1 1 1 1 1 0

Month 31 32 33 34 35 36
Value 0 1 3 0 6 2

Table 7 Data set 141

Month 1 2 3 4 5 6 7 8 9 10
Value 6 17 38 52 63 91 168 118 159 151

Month 11 12 13 14 15 16 17 18 19 20
Value 168 136 227 179 198 157 156 137 106 105

Month 21 22 23 24 25 26 27 28 29 30
Value 73 57 47 34 56 50 43 30 28 27
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